
 

 

1 

 

Final Project Report  

 

Development of an Integrated Model System of Transport 

and Residential Energy Consumption 
 

Prepared for Teaching Old Models New Tricks (TOMNET) Transportation Center 

 

 

 
 

 

 

 

 

 

 

 

By 

 

Ram M. Pendyala 

Email: ram. pendyala@asu.edu  

 

Shivam Sharda 

Email: ssharda@asu.edu  

 

Taehooie Kim 

Email: taehooie.kim@asu.edu 

 

Sara Khoeini 

Email: skhoeini@asu.edu  

 

Irfan Batur 

Email: ibatur@asu.edu  

 

 

School of Sustainable Engineering and the Built Environment 

Arizona State University 

660 S. College Avenue, Tempe, AZ 85287-3005 

 

 

March 2021 

mailto:xxx@xxx.com
mailto:xxx@xxx.com
mailto:taehooie.kim@asu.edu
mailto:xxx@xxx.com
mailto:xxx@xxx.com


 

 

2 

 

TECHNICAL REPORT DOCUMENTATION PAGE 

1. Report No. 

N/A 

2. Government Accession No. 

N/A 

3. Recipient's Catalog No. 

N/A 

4. Title and Subtitle 

Development of an Integrated Model System of Transport and Residential 

Energy Consumption 

5. Report Date 

March 2021 

6. Performing Organization Code 

N/A 

7. Author(s) 

Ram M. Pendyala, https://orcid.org/0000-0002-1552-9447 

Shivam Sharda,  

Taehooie Kim,  

Sara Khoeini, https://orcid.org/0000-0001-5394-6287  

Irfan Batur, https://orcid.org/0000-0002-8058-2578 

8. Performing Organization Report No. 

N/A 

9. Performing Organization Name and Address 

School of Sustainable Engineering and the Built Environment 

Arizona State University 

660 S. College Avenue, Tempe, AZ 85287-3005 

10. Work Unit No. (TRAIS) 

N/A 

11. Contract or Grant No. 

69A3551747116 

12. Sponsoring Agency Name and Address 

U.S. Department of Transportation,  

University Transportation Centers Program,    

1200 New Jersey Ave, SE, Washington, DC 20590 

13. Type of Report and Period Covered 

Research Report  

(2019-2020) 

14. Sponsoring Agency Code 

USDOT OST-R 

15. Supplementary Notes 

N/A 

16. Abstract 

The energy footprint of households is inextricably tied to the amount of travel undertaken by households. The 

transportation energy consumption is dependent on the mix of vehicles that a household owns and uses, and 

the extent to which different vehicles in a household are driven. Integrated models of activity-travel demand 

and transport energy consumption often do not consider the mix of vehicle types owned and used by 

households, thus making it difficult to assess the energy implications of shifting vehicle/fuel type choices – 

particularly in a rapidly evolving marketplace. More importantly, integrated models of activity-travel demand 

and transport energy consumption do not consider the residential energy consumption implications of travel. 

If people travel more (and spend more time outside home), they may consume more travel energy, but consume 

less in-home residential energy.  Thus, an integrated model system that tightly connects activity-travel demand, 

travel energy consumption (sensitive to vehicle fleet/fuel type), and residential energy consumption (sensitive 

to activity-travel choices) is needed to obtain a holistic picture of household energy footprints.  This report 

describes the integrated model system that connects these three entities.  The model is developed by fusing 

information between two survey data sets, namely, the National Household Travel Survey (NHTS) data set 

and the Residential Energy Consumption Survey (RECS) data set. The integrated model system is applied to 

a synthetic population for the Greater Phoenix area in Arizona to illustrate the efficacy of the model system.  
17. Key Words 

Integrated models, Transport energy, Residential energy, Household 

energy footprint 

18. Distribution Statement 

No restrictions. 

 

19. Security Classif.(of this report) 

Unclassified 

20. Security Classif.(of this page) 

Unclassified 

21. No. of Pages 

22 

22. Price 

N/A 

Form DOT F 1700.7 (8-72)              Reproduction of completed page authorized 

 
 

https://orcid.org/0000-0002-1552-9447
https://orcid.org/0000-0001-5394-6287
https://orcid.org/0000-0002-8058-2578


 

 

 3 

DISCLAIMER 

The contents of this report reflect the views of the authors, who are responsible for the facts and 

the accuracy of the information presented herein. This document is disseminated in the interest of 

information exchange. The report is funded, partially or entirely, by a grant from the U.S. 

Department of Transportation’s University Transportation Centers Program. However, the U.S. 

Government assumes no liability for the contents or use thereof. 

 

 

ACKNOWLEDGMENTS 

This study was funded by a grant from A USDOT Tier 1 University Transportation Center, 

supported by USDOT through the University Transportation Centers program. The authors would 

like to thank TOMNET and USDOT for their support of university-based research in transportation, 

and especially for the funding provided in support of this project.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

 

 4 

TABLE OF CONTENTS 

EXECUTIVE SUMMARY ............................................................................................................ 6 

INTRODUCTION .......................................................................................................................... 7 

UNDERSTANDING AND QUANTIFYING THE HOUSEHOLD ENERGY FOOTPRINT ...... 8 

THE TRAVEL AND ENERGY SURVEY DATA SETS .............................................................. 9 

MODEL DEVELOPMENT AND ESTIMATION RESULTS .................................................... 10 

ILLUSTRATIVE CASE STUDY................................................................................................. 15 

CONCLUSIONS........................................................................................................................... 20 

REFERENCES ............................................................................................................................. 21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 5 

LIST OF TABLES 

Table 1 Description of Household Characteristics (Western Region) .......................................... 11 

Table 2 Seemingly Unrelated Regression (SUR) Equations Model Estimation Results .............. 14 

 

LIST OF FIGURES 

Figure 1 Model Development and Application Framework ......................................................... 12 

Figure 2 Visualization of Energy Consumption Distribution for Maricopa County, Arizona ..... 17 

Figure 3 Comparison of Household Profiles Based on their Energy Consumption Bin .............. 18 

Figure 4 Comparison of Two Zones with Different Energy Consumption Profiles ..................... 19 

 



 

6 

 

EXECUTIVE SUMMARY 

The energy footprint of households is inextricably tied to the amount of travel undertaken by 

households. The transportation energy consumption is dependent on the mix of vehicles that a 

household owns and uses, and the extent to which different vehicles in a household are driven. 

Integrated models of activity-travel demand and transport energy consumption often do not 

consider the mix of vehicle types owned and used by households, thus making it difficult to assess 

the energy implications of shifting vehicle/fuel type choices – particularly in a rapidly evolving 

marketplace. More importantly, integrated models of activity-travel demand and transport energy 

consumption do not consider the residential energy consumption implications of travel. If people 

travel more (and spend more time outside home), they may consume more travel energy, but 

consume less in-home residential energy.  Thus, an integrated model system that tightly connects 

activity-travel demand, travel energy consumption (sensitive to vehicle fleet/fuel type), and 

residential energy consumption (sensitive to activity-travel choices) is needed to obtain a holistic 

picture of household energy footprints.  This report describes the integrated model system that 

connects these three entities.  The model is developed by fusing information between two survey 

data sets, namely, the National Household Travel Survey (NHTS) data set and the Residential 

Energy Consumption Survey (RECS) data set. The integrated model system is applied to a 

synthetic population for the Greater Phoenix area in Arizona to illustrate the efficacy of the model 

system.  
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INTRODUCTION 

The US Environmental Protection Agency (EPA) estimates that the nation’s transportation, 

commercial, and residential sectors contributed 29, 19, and 21 percent respectively, of the total 

greenhouse gas (GHG) emissions in 2016 (EIA, 2017), indicating that human activity plays a 

significant role in shaping the carbon footprint in communities and cities.  It is therefore of 

considerable importance to quantify the consumption of energy that is attributable to each of these 

sectors, as the energy consumption patterns directly translate into GHG emissions that contribute 

to global climate extremes.  In an effort to address this need, this report presents an integrated 

model system that can be used to compute the household energy footprint.  

Within the scope of this report, household energy footprint is assumed to comprise of two 

main components. The first component is the transport energy consumption and the second 

component is the residential energy consumption that stems from electricity, natural gas, and other 

utility expenditures. The transport energy consumption is dependent on the mix of vehicles that a 

household owns and uses, and the extent to which each of the different vehicles in a household is 

driven. The residential energy footprint primarily stems from the consumption of electricity and 

natural gas, although other fuel sources may also contribute to a household’s utility expenditure 

pattern. The scope of analysis of residential energy footprint can be very broad depending on the 

extent of the supply chain that is considered and the extent to which embedded energy is included 

in the accounting system. For purposes of quantifying and characterizing the residential energy 

footprint in this report, only the actual operational energy consumption (utility expenditures) is 

considered. The total household (operational) energy footprint may then be viewed as a sum of the 

transport energy consumption and residential energy consumption, with both components 

accounting only for the operational energy consumption within the respective domains. 

There is a relationship, however, between residential and transport energy consumption. 

The residential energy consumption may be posited as being influenced by activity-travel 

characteristics of household members. If household members travel extensively outside the home, 

then the residential energy consumption may decrease if the households take necessary energy 

saving precautions when they are not at home. Such households may have large transportation 

energy footprints and smaller residential energy footprints. Conversely, households that spend a 

lot of time at home may have smaller transport energy footprints, but larger residential energy 

footprints. The estimation of the total energy footprint of a household should take into account the 

potential relationship that may exist between transport and residential energy footprint.   

 Despite considerable work in this area, an integrated model of household energy footprint 

that accounts for the relationship between transport and residential energy consumption remains 

elusive.  This report aims to fill this critical gap by presenting a comprehensive integrated model 

system and energy analysis tool that can be used to quantify the total household energy footprint, 

including the separate transport and residential energy consumption components. The model 

system is developed through a multi-step process that involves fusing information contained in the 

2017 National Household Travel Survey (NHTS) data set (which includes detailed vehicle and 

travel information) and the 2015 Residential Energy Consumption Survey (RECS) data set (which 

includes detailed residential energy-related information). The model system involves computing 

the transport energy footprint based on household vehicle mix and miles of travel, and then 

computing both electricity and natural gas consumption while explicitly accounting for the 

influence that activity-travel behavior may have on the residential energy consumption patterns.  

  The remainder of this report is organized as follows. The next section offers a brief 

overview of the work in this topic area. The third section presents a brief overview of the two data 
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sets used and fused in this study. The fourth section offers a detailed description of the integrated 

modeling framework and methodology. The fifth section presents an illustrative application of the 

model system to a synthetic population for the Greater Phoenix area in Arizona.  The sixth and 

final section offers concluding remarks.   
 

UNDERSTANDING AND QUANTIFYING THE HOUSEHOLD ENERGY FOOTPRINT 

There is a vast body of literature devoted to analyzing and quantifying energy consumption 

patterns of various entities. However, modeling tools developed thus far do not explicitly account 

for inter-dependencies among constituent energy consumption components that are vital to 

forecasting the energy footprint in response to changes in population characteristics and built 

environment conditions, technology, transportation network attributes, and public policies.  

 Many studies have focused on analyzing residential energy consumption patterns.  It has 

been reported that spatial configuration and land use patterns are important determinants of 

residential energy consumption (e.g., Wang et al, 2016).  Yang et al (2019) studied the impact of 

urbanization on China’s residential energy consumption and found that increased urbanization 

leads to an increase in both urban and rural residential electricity consumption. However, another 

study using data from Thailand found that urban residents consume less energy than rural 

counterparts (Meangbua et al, 2019). Other studies (e.g., Belaid, 2019) have explored the influence 

of dwelling unit characteristics and size, household characteristics, and household behaviors on 

residential energy consumption. Variation in temperatures, especially due to global climate change, 

significantly influences residential energy consumption. Maengbua et al (2019) concluded that a 

1̊ Celsius rise in temperature results in 200 percent increase in energy consumption. More recently, 

Zhang et al (2018) applied a microsimulation-based approach to estimate residential energy 

consumption. The study involved the fusion and synthesis of data across energy and census data 

sets to estimate a model of residential energy consumption of the individual household. The work 

in this report is intended to extend that model in very significant ways by integrating transportation 

energy consumption and activity-travel behaviors to obtain a holistic household energy footprint 

estimation model system.  

 Likewise, there is a vast body of work dedicated to measuring and quantifying transport 

energy consumption. Recently, Brand et al (2019) assessed the impacts of lifestyle changes and 

transition to electric vehicles (EV) on transportation energy consumption. Disruptive 

transportation technologies offer a promising mobility future, but an uncertain energy consumption 

future. Wadud et al (2016) assessed the impact of autonomous vehicles on energy consumption 

and found that automation could double energy use or cut it to one-half of current levels under 

different scenarios. Similarly, Chen et al (2017) concluded that fuel consumption in an autonomous 

vehicle future would reduce by 45 percent under optimistic scenarios and increase by 30 percent 

under pessimistic scenarios. Another study assessed the energy implications of ride-hailing 

services in Austin and found that the energy use may increase by 41-90 percent compared to 

baseline, pre-ride hailing, personal travel conditions (Wenzel et al, 2019). Ding et al (2017) 

explored the impacts of the built environment on vehicle miles of travel (VMT) and energy 

consumption and found that vehicle energy consumption is inversely related to employment 

density and street connectivity. Other efforts aimed at quantifying transport energy consumption 

include those by Tirumalachetty et al (2013) and Das and Parikh (2004).  More recently, Garikapati 

et al (2017) developed a framework to estimate household energy footprint at the traffic analysis 

zone (TAZ) level through an interface with a standard metropolitan travel demand model. They 

noted that any travel energy footprint calculation that does not account for variation in vehicle fleet 
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mix distribution across space is likely to not only be erroneous, but also fail to provide the policy 

sensitivity that may be desired for analyzing alternative fuel vehicle scenarios (owing to evolution 

of technology, changes in the marketplace, or incentives and disincentives instituted through public 

policy interventions).  

 In summary, there is much interest in analyzing and computing household energy 

consumption patterns. In fact, a few studies have attempted a more holistic and integrated approach 

to energy analysis; for example, Shekar et al (2018) studied the impact of changes in activity time 

use on energy consumption. The authors find that lifestyle changes caused by technology 

contribute to shifts in energy use across sectors. Despite these and many other advances (e.g., 

Sheppard et al, 2017; Auld et al, 2018) in the development of energy modeling tools, an integrated 

model system that considers the inter-relationship between transport and residential energy 

consumption in computing a household energy footprint remains elusive; this effort is intended to 

fill this gap.   

 

THE TRAVEL AND ENERGY SURVEY DATA SETS 

An integrated transport and residential energy analysis tool requires information from two major 

survey data sets as explained previously. Transportation, activity participation, and vehicle fleet 

related information need to come from a travel survey data set while residential energy 

consumption information needs to come from an energy survey data set. For the development of 

the integrated model, the two data sets used in this study are the 2017 National Household Travel 

Survey (NHTS) data set and the 2015 Residential Energy Consumption Survey (RECS) data set. 

To control for geographic variations, the model development and application efforts utilized 

samples exclusively from the western region of the country in this study.  The model system can 

be estimated, calibrated, and applied in any context using appropriate geographically local data.  

 The National Household Travel Survey (NHTS) data set is derived from a large scale travel 

survey conducted about every 8-10 years by the US Department of Transportation to understand 

and quantify travel undertaken by people on a daily basis. Respondent households are asked to 

furnish detailed information about household and person level socio-demographic characteristics, 

vehicles owned or leased by the household, and trips undertaken by each member of the household 

on a specific travel day.  Thus, the NHTS is a rich source of information about vehicle ownership 

and fleet composition for households, which is precisely the information needed to compute the 

transport energy consumption of households.   

The integrated model system includes a household vehicle fleet composition and utilization 

(VFCU) model so that energy estimates are sensitive to vehicle fleet mix.  In this study, four 

vehicle types were considered: car, van, SUV, and truck. These four vehicle types were further 

subdivided according to age based on whether the vehicle is less than or equal to eight years old. 

Thus, there are a total of eight vehicle type categories; in addition, the motorcycle is added as a 

ninth vehicle category. A multiple discrete continuous extreme value (MDCEV) model of VFCU 

is developed in this effort to determine the mix of vehicle types that a household may own, together 

with the amount of mileage that each vehicle will be driven by the household on an annual basis 

(Bhat, 2008). Information about vehicle type and mileage is available in the NHTS, thus making 

it possible to estimate such a model. In addition, the NHTS provides detailed activity-travel 

information for each member of the household for a specific travel survey day. The activity-travel 

information is used to derive the total time that an individual spends outside home at various 

activity locations, time spent traveling, and time spent in home (although in-home activities are 

not explicitly recorded). By aggregating information about travel and activities across individuals 
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within a household, it is possible to derive the total time spent outside home, inside home, and 

traveling for a household.  

 The Residential Energy Consumption Survey (RECS) data set is derived from a large scale 

energy consumption survey that is conducted about every six years. The most recent edition of the 

RECS data set is of 2015 vintage and used in this study. Although the sample size is reasonably 

large (by survey design standards), the sample is rather small when compared with the sample size 

for the NHTS. The sample size utilized in this study comprises 1,555 households (with complete 

information) distributed across the western region of the country. Similar to the NHTS, the RECS 

data set includes information about the respondent household, together with detailed information 

about residential energy consumption – that can be used to estimate residential electricity and 

natural gas consumption models.  

 To account for potential inter-relationships between transport and residential energy 

consumption, the proposed integrated modeling framework involves imputing vehicle fleet 

composition and utilization (VFCU) information and activity-travel behavior information derived 

from the NHTS to the household records in RECS. The enhanced RECS data set can then be used 

to estimate residential energy consumption models that are sensitive to activity-time allocation 

patterns, VFCU, and transport energy consumption, as well as household characteristics, location 

attributes, climatic conditions, and housing unit characteristics. 

Table 1 presents a summary of the two household samples. A slightly larger percent of 

households in the RECS data rent their home compared to the sample in the NHTS data. The 

household income categories do not line up exactly between the two surveys; in the NHTS, nearly 

30 percent of households make less than $35,000, while in the RECS, nearly 40 percent of 

households make less than $40,000. Over 85 percent of households in both data sets reside in urban 

areas. The distribution of the sample from a geographic perspective suggests there is significant 

differences in the spatial distribution of the samples across the western region, but the differences 

do not adversely affect the model development efforts described in this report. Similarly, the two 

samples exhibit noticeable differences in distributions of household size, number of adults and 

children, and dwelling unit type. While these differences are noteworthy and merit some additional 

investigation, they do not adversely affect data fusion/imputation processes here because models 

are specified to account for such differences.  In terms of other characteristics, nearly 50 percent 

of the households reside in hot-dry/mixed-dry conditions and about 36 percent of the households 

have three bedrooms. The table also furnishes descriptive statistics for square feet of residences.  

 

MODEL DEVELOPMENT AND ESTIMATION RESULTS 

This section of the report provides a summary of the model development and estimation process.  

The effort undertaken in this study can be broken down into two distinct phases. First, there is the 

model development phase in which information is fused between two data sets and models are 

estimated so that they can be applied to any region’s population to quantify the household energy 

footprint.  Thus, there is the data fusion and model estimation phase (Figure 1, Steps 1-4).  Second, 

there is the model application phase (Figure 1, Step 5). In this phase, the efficacy of the model is 

demonstrated by applying the model system developed in the first phase to a real-world case study.   
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Table 1 Description of Household Characteristics (Western Region) 
2017 National Household Travel Survey (NHTS) 

Household Characteristics (N = 26,743 households) 

2015 Residential Energy Consumption Survey (RECS) 

Household Characteristics (N = 1,555 households) 

Variable                                                   Value (%) Variable                                                 Value (%) 

Home ownership Home ownership 

    Own 72.4    Own 66.2 

    Rent 27.6    Rent 33.8 

Annual Household income  Annual Household income  

    Low (less than $35,000) 26.4    Low (less than $40,000) 35.9 

    Medium ($35,000 to $99,999) 41.9    Medium ($40,000 to $99,999) 37.0 

    High ($100,000 or more) 31.7    High ($100,000 or more) 27.1 

Household in urban/rural area  Household in urban/rural area  

    Urban 86.6     Urban 86.9 

    Rural 13.3     Rural 13.1 

Region  Region  

    Mountain West States 15.7     Mountain West States 30.2 

    Pacific States 84.3     Pacific West States 69.8 

Household Size   Household Size   

    One 31.8     One 20.1 

    Two 42.6     Two 37.2 

    Three or more 25.6     Three or more 42.7 

Number of Adult household members (Age ≥ 18 years) Number of Adult household members (Age ≥ 18 years) 
    One 34.4     One 24.1 

    Two 54.6     Two 55.7 

    Three or more 11.0     Three or more 20.2 

Number of Young household member (Age ≤ 17 years) Number of Young household member (Age ≤ 17 years) 

    Zero 84.4     Zero 65.6 

    One 8.2     One 14.2 

    Two or more 7.4     Two or more 20.2 

Housing unit type*  Housing unit type  

    Detached 70.5     Detached 68.7 

    Attached 26.2     Attached 9.1 

    Apartment 3.3     Apartment 22.2 

  Climatic Condition  

     Very Cold/Cold 22.8 

     Hot-Dry/Mixed-Dry 48.2 

     Hot-Humid 1.7 

     Mixed-Humid 27.3 

  Number of Bedrooms  

      ≤ One 12.0 

      Two 25.9 

      Three 36.0 

      Four or more 26.0 

  
Total Square Feet of Home 

Min Max Mean 

  228 7986 1862.6 

*Housing unit type information is not available in 2017 NHTS and was imputed based on 2009 NHTS data. 
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Figure 1 Model Development and Application Framework 

 

An integrated model of transport and residential energy consumption should include 

components capable of estimating and quantifying:  

• Transport energy consumption due to vehicle fleet mix and vehicle miles of travel 

• Electricity consumption due to household operations 

• Natural gas consumption due to household operations 

The first step of the system development process involved estimating a vehicle fleet composition 

and utilization (VFCU) model system on the NHTS data set. The VFCU model system estimated 

and implemented here is similar to that developed previously (You et al, 2014). The model system 

includes a number of components:   

a) A household mileage budget prediction model: The MDCEV model  allocates a continuous 

household mileage to different vehicle alternatives, thus creating a vehicle fleet 

composition and mileage profile for each household. To accomplish this, a budget 

prediction model is needed. The mileage reported in the NHTS data is used to estimate a 

log-linear regression model of total household mileage.  

b) A MDCEV model of vehicle fleet composition: The MDCEV model explicitly recognizes 

that households may choose to own and consume multiple vehicles of different types. A 

total of nine vehicle-type alternatives are considered in this study and the MDCEV model 

is estimated for this choice set. The model is capable of accounting for diminishing 

marginal utility (satiation effects) and zero consumption (corner solutions) wherein some 

vehicle alternatives may not be chosen by a household at all. 

c) Ordered Probit models of vehicle counts by type: The MDCEV model is able to predict the 

types of vehicles that a household owns (consumes), but it does not explicitly provide the 

number of vehicles within each type that a household may own. For example, a household 

may own two cars that are less than eight years old. While the MDCEV model is able to 

predict that the household owns cars less than eight years old, it does not explicitly provide 

a count of the number of cars within that vehicle class. The ordered probit models of vehicle 

counts by type help establish the number of vehicles that are owned within each class of 

vehicles that the MDCEV predicts that a household owns.   



 

13 

 

 

This entire VFCU model stream was estimated on the NHTS sample for this study and the model 

was subjected to extensive testing and validation. A few additional steps explained in You et al 

(2014) were implemented to ensure that the model predictions matched real world vehicle fleet 

composition and utilization distributions. 

 The second step of the process involved estimating a MDCEV model of activity time 

allocation (ATA). The activity time allocation model allocates a budget of 1440 minutes to various 

activity categories including out-of-home mandatory activity time (e.g., work, school), out-of-

home non-mandatory activity time (e.g., social, shopping), in-home time, and travel time. Further, 

separate MDCEV time allocation models were estimated for weekdays and weekend days to 

account for the fact that individuals perform different activities by day of week with consequent 

implications for residential energy consumption patterns. The activity-travel diary information in 

the NHTS is used to compute these time durations for each household in the sample. The household 

time budget is assumed to equal 1440 × number of adults in the household × number of 

weekdays/weekend-days in a year.  This budget is then allocated through a multiple discrete 

continuous choice process to the four broad activity categories. Because the budget is 

predetermined in the activity time allocation (ATA) context, there is no need for a model 

component dedicated to estimating the budget. The MDCEV-predicted time allocation patterns 

are compared against the actual patterns in a 20 percent holdout sample to calibrate and validate 

the model. The model was found to perform very well in replicating observed distributions of 

activity time allocation and was hence deemed appropriate for imputing activity time allocation 

patterns to households in the RECS data.   

 The third step involved the application of the MDCEV model of vehicle fleet composition 

and utilization (estimated in Step 1) to the RECS data set to predict, impute, and append vehicle 

ownership and mileage information to the household records in the RECS data set. Similarly, the 

MDCEV model of activity time allocation was applied to the household records in the RECS data 

set to estimate and append the amount of time that each household devoted to various activity 

categories. It should be noted that all records in the RECS data set are household level records; 

hence the time allocation pattern predicted and appended corresponds to activity durations at the 

household level (for example, the time spent traveling corresponds to the total time spent traveling 

accumulated over all adult household members).   

 At the end of the third step, each RECS household record has vehicle fleet composition 

information and corresponding annual mileage values. These vehicle mileage values were 

converted into transportation energy consumption estimates using the fuel economy data published 

by the US Environmental Protection Agency (2018). Using energy conversion factors, the total 

BTU of transport energy consumption was computed for each household and appended to the 

records in the RECS data set. It should be noted that vehicle body type and age are explicitly 

considered in the computation of the transportation energy footprint.      

 The fully enhanced RECS data set now contains information about household 

characteristics, climatic conditions, and the housing unit (original variables contained in RECS), 

together with vehicle fleet composition and utilization information, transport energy consumption 

information, and household activity time allocation information. In the fourth and final step, this 

enhanced data set was used to estimate a seemingly unrelated regression (SUR) equations model 

of residential electricity and natural gas consumption (these variables are native to the RECS data 

set). The SUR model recognizes the presence of error correlation between the two linear regression 

equations embedded in the model system and incorporates transport energy consumption and 
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activity time allocation variables as explanatory factors, thus capturing the potential inter-

dependency between residential energy consumption and household time allocation to activities 

and travel. Estimation results for the SUR model are presented in Table 2. 

 

Table 2 Seemingly Unrelated Regression (SUR) Equations Model Estimation Results 

Electricity Regression Equation Natural Gas Regression Equation 

Explanatory Variable Coef (t-stat) Explanatory Variable  Coef (t-stat) 

Constant 36423 (19.12) Constant 10637.6 (4.60) 

Home Ownership = Owned 2750.3 (2.20) Low Income Hhld (< $40,000) -3895.8 (-2.53) 

High Income Hhld (≥ $100,000) 1809.7 (1.67) High Income Hhld (≥ $100,000) 5099.1 (3.02) 

Number of Adults ≥ 3 (age ≥ 18) 2958.8 (2.45) Number of Adults ≥ 3 (age ≥ 18) 2639.3 (1.52) 

Housing unit type = Apartment -10470.0 (-6.86) Housing unit type = Apartment -15036.5(-7.97) 

Location = Urban -10649.6 (-7.31) Location = Urban 15878.4 (7.95) 

Region = Mountain 5580.1 (4.39) Region = Mountain 14138.1 (8.86) 

Climate = Mix-Humid 4581.1 (3.88) Climate = Mix-Humid -4925.1 (-3.00) 

Number of Bedrooms = 1 -2203.6 (-1.18) Number of Bedrooms = 1 -3690.1 (-1.46) 

Total Square Feet  ≤ 600 sq ft -4290.6 (-2.00) Number of Bedrooms ≥ 4 15277.8 (9.39) 

Annual Out-of-Home Non-

Mandatory Activity × HHSize = 1 
-0.054 (-2.78) 

Annual Out-of-Home Non-

Mandatory Activity × HHSize ≥ 3 
0.010 (2.29) 

Annual Out-of-Home Non-

Mandatory Activity × HHSize ≥ 3 
0.0093 (3.02) Travel Time × HHSize ≥ 3 0.011 (1.93) 

Travel Time × HH Size =1 -0.067 (-2.95)   

Number of Observations: 1,555 households 

R-squared: 0.199 

Number of Observations: 1,555 households 

R-squared: 0.269 

 

 Model estimation results are behaviorally intuitive and consistent with expectations, 

potentially suggesting that the data imputed to RECS is consistent with patterns of energy 

consumption and household activity time allocation that are seen in the real world.  In the 

electricity consumption regression equation, it is found that out-of-home non-mandatory activity 

time (e.g., time spent outside home shopping or socializing) negatively affects electricity 

consumption for one-person households, but positively for three or more person households. When 

the individual in a single-person household spends time outside home, there is presumably nobody 

at home – thus reducing energy consumption.  In a large household with three or more persons, it 

is possible that some individuals are at home (consuming energy) even when others in the 

household are pursuing activities outside home. Thus, multi-person households are likely to exhibit 

higher levels of activity both inside and outside home, thus contributing to a larger energy 

consumption footprint.  Similar findings emerge for out-of-home travel time for single person 

households. High-income households consume more electricity than other households, 

presumably because they can afford greater levels of consumption of goods and services (e.g., 

ability to own large homes with larger number of rooms) (Maengbua et al, 2019).  Larger 

households consume more electricity, as expected. Homes in urban areas consume less electricity 

as do households in apartments. These tend to be smaller homes in urban locations and hence 

consume less energy (Maengbua et al, 2019). Similarly, houses with one bedroom and square 

footage less than 600 feet consume less electricity, a finding similar to that reported by Belaid et 

al. (2019). Houses in mix-humid conditions and mountain regions tend to consume more 

electricity, presumably due to the need to run the air conditioning.    
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 The equation for natural gas consumption also offers behaviorally intuitive interpretation.  

Out-of-home time allocation for non-mandatory activities has a positive impact on natural gas 

consumption for larger households, similar to the finding for electricity consumption. The same 

pattern is seen for travel time as well.  As household income increases, so does natural gas 

consumption, presumably due to higher levels of consumption of goods and services in high-

income households (Davis and Muehlegger, 2010).  Natural gas consumption also increases with 

number of adults in the household. Interestingly, it is found that homes in urban areas consume 

more natural gas as do homes in mountain regions. This may be reflective of the energy mix in 

homes located in these spatial contexts. As the number of bedrooms increases, energy consumption 

increases. Households in mix-humid condition tend to consume less natural gas, presumably 

because natural gas is often used for heating; and in mix-humid conditions, households may need 

more cooling that uses electricity rather than natural gas.    

 At the end of the four steps in the model development and estimation phase, an integrated 

model of transport and residential energy consumption that can be applied to a population of agents 

(households) is obtained (Figure 1, Step 5). The suite of models that comprise the integrated 

transport and residential energy analysis tool constitute the following:  

a) MDCEV model of household vehicle fleet composition and utilization (mileage) 

b) MDCEV model of household daily activity time allocation  

c) Transport energy computation model utilizing energy intensity tables that provide 

conversion factors (EPA, 2018) to translate miles of household travel by various vehicle 

types to equivalent energy consumption 

d) Residential energy consumption model (SUR model) of electricity and natural gas 

consumption 

It should be noted that both NHTS and RECS are national data sets, and hence caution should be 

exercised when applying models estimated on large regional samples to individual jurisdictions 

(e.g., cities or counties). Unfortunately, the RECS data set is not quite large enough to support very 

localized model estimation efforts. Hence, in this study, the entire sample from the western region 

was used for model development purposes. Given this geographic scope of the model estimation 

data set, it may be reasonable to apply the model to jurisdictions that fall squarely within the region.  

For illustrative purposes, the model was applied to the Greater Phoenix area in Arizona; this case 

study is described next.  

 

ILLUSTRATIVE CASE STUDY  

The case study involved applying the model system to a synthetic population generated for 

Maricopa County (Greater Phoenix area) in Arizona, and computing and mapping the energy 

footprint per household across the census tracts in the region. Synthetic population generation and 

energy computations may be done at any geographic resolution; the census tract is used here for 

illustrative purposes and convenience.  

 The case study region of Maricopa County, AZ, includes 916 census tracts and 

encompasses a population of 4,155,501 persons residing in 1,489,533 households in 2017. A 

synthetic population was generated for the region using a software package called PopGen 

(Konduri et al, 2016). PopGen creates a synthetic population for a region by weighting and 

expanding a sample data set such that the weighted sample is representative of the true population 

with respect to marginal distributions on a number of control variables of interest such as 

household size, household income, number of workers, number of children, person age, person 

gender, and person employment status. The marginal control distributions representing true 



 

16 

 

population characteristics are typically obtained from the census or regional agency databases. The 

American Community Survey (ACS) Public Use Microdata Sample (PUMS) data serves as the 

seed sample which will be weighted and expanded to a full synthetic population that matches the 

marginal control distributions. For each census tract, the sample is weighted to match marginal 

control distributions on variables of interest, and then households are drawn according to weight-

based probabilities to create a synthetic population that matches true population numbers. More 

details about PopGen algorithms can be found in Konduri et al (2016). Synthetic populations for 

all census tracts are combined to form the county-wide synthetic population of households and 

persons. As the sample records drawn into the synthetic population are derived from PUMS, the 

records are rich with information necessary to apply a model of the nature described in this report.   

 The entire suite of models (Figure 1, Step 1-4) described in the previous section is applied 

to the synthetic population. First, the MDCEV model of vehicle fleet composition and utilization 

is applied; this provides the vehicle fleet mix and mileage for each household. Second, the 

MDCEV model of activity time allocation is applied; this provides the time spent by each 

household (as a whole) in various activity categories including in-home, out-of-home mandatory 

activities, out-of-home non-mandatory activities, and travel time. Note that the application of the 

MDCEV models requires that they be exercised in forecasting mode; the procedures described in 

Pinjari and Bhat (2011) are used to accomplish this. By the end of this step, each synthetic 

population household is appended with vehicle fleet composition and utilization as well as activity-

time allocation information. Then, the energy intensity conversion factors are used to compute the 

transport energy consumption for each household. Finally, the SUR model of residential energy 

consumption is applied to compute residential electricity and natural gas consumption as a function 

of various factors, while accounting for the relationship between residential energy consumption 

and activity time allocation.   

After the residential and transport energy footprints are computed for each household in 

the synthetic population, summaries are derived and aggregate measures of energy consumption 

are calculated at the census tract level. Figure 2 shows the spatial distribution of energy 

consumption per household for census tracts in the Maricopa County, AZ, region. The first picture 

depicts transport energy consumption, the second graphic depicts residential energy consumption 

(sum of electricity and natural gas consumption), and the third graphic displays total energy 

footprint obtained by adding up the residential and transport energy consumptions. The thematic 

maps reveal that total energy consumption is higher in more affluent, lower density outlying cities 

and towns.  In general, a clear pattern can be seen across all three figures. Census tracts in the 

middle (urban core areas) are greener, while census tracts in outlying suburban areas and towns 

are more red (signifying a higher level of energy consumption per household).  This pattern may 

emerge because of a number of reasons; households in outlying suburban areas are likely to be 

more affluent and residing in larger homes, have larger households, have higher vehicle ownership, 

and need to drive to reach destinations.  Census tracts can be categorized into one of four groups, 

depending on where they fall – on average – compared to the overall region wide average energy 

footprint per household:  

• HH: Both residential and transportation energy consumption per household are above the 

regional averages 

• HL: Higher residential energy consumption and Lower transport energy consumption 

• LH: Lower residential energy consumption and Higher transport energy consumption 

• LL: Lower residential energy consumption and Lower transport energy consumption 
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Figure 2 Visualization of Energy Consumption Distribution for Maricopa County, Arizona 
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The average annual energy footprints were computed to be 59,405,158 BTU of residential energy 

consumption and 119,604,797 BTU of transport energy consumption (per household). These 

numbers are generally consistent with expectations and match real-world energy consumption 

estimates (EIA, 2017). 

Figure 3 shows a comparison between the HH and LL household segments.  It can be seen 

that there are very clear differences between households that are high consumers of residential and 

transport energy and households that are low consumers of energy. Because the distributions of 

energy consumption are skewed, the size of each segment varies. While 17 percent of households 

fall into the HH segment, 40 percent of households fall into the LL segment.  This is consistent 

with expectations as the average is likely to be impacted by outliers in the energy consumption 

spectrum.  The comparison between the HH and LL segments shows a number of patterns that are 

very consistent with expectations, suggesting that the integrated model developed in this effort 

offers intuitively reasonable estimates of household energy footprint.     

 Households that are energy guzzlers have substantially higher incomes levels than 

households in the LL category. In fact, of the households in the HH category, nearly one-half 

belong to the high-income group. While 88 percent of households in the HH category own their 

homes, only 46 percent of households in the LL category do so. Among households in the HH 

category, 95 percent reside in detached housing units; the corresponding percent for households in 

the LL category is just 45 percent. Households in the LL category show substantially smaller 

household sizes, with about 40 percent of the households in this segment having only one person. 

Overall, it can be seen that household structure, composition, and income significantly impact 

household energy consumption patterns.   

  

 
Figure 3 Comparison of Household Profiles Based on their Energy Consumption Bin 

 

 In the interest of brevity, the graph comparing HL and LH households is not shown in this 

report. However, some interesting differences are seen between these two groups of households. 
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The HL segment (high residential and low transport energy consumption) comprises 26 percent of 

the population, while the LH segment comprises 17 percent of the households in the region. In 

general, households that have higher transport energy consumption tend to be larger and more 

affluent, which is to be expected given their higher activity levels. 

To further illustrate the efficacy of the modeling tool presented in this report, two census 

tracts that have different energy consumption profiles were compared. The two census tracts that 

were compared are highlighted in the third panel of Figure 2. One census tract has a low per-

household energy consumption (L) while the other has a large per-household energy consumption 

(H). What makes households in one census tract to be higher energy consuming entities than 

households in another census tract?  Households in the respective census tract were compared with 

respect to their attributes and the results are shown in Figure 4. Both census tracts have about an 

equal number of households. The census tract with high-energy consumption (H) has 1,476 

households while the census tract with low total energy consumption (L) has 1,033 households.  

In other words, the number of households in the census tracts is not necessarily affecting the energy 

consumption per household. Rather, it is the attributes of the households that contribute to the 

differences. 

 

 
Figure 4 Comparison of Two Zones with Different Energy Consumption Profiles 

 

 As expected, a larger proportion of households in the high-energy consumption zone are 

owned (than in the lower energy consumption zone). The disparity in income distribution is 

extremely telling. While 64 percent of households in the low-energy consumption zone are low 

income, only 2 percent of households in the high-energy consumption zone fall into this income 

category. Similarly, high-energy consumption zone has a higher percent of detached single-family 

dwelling units than the low-energy consumption zone. The low-energy consumption zone has 26 

percent single-person households while the high-energy consumption zone has only nine percent 

in this household size category. 

 It is clear that socio-economic and demographic characteristics as well as housing unit 

attributes significantly impact energy consumption patterns of households.  In addition, built 
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environment attributes, mix and density of land uses, and availability of multiple modes of 

transportation are likely to impact energy consumption footprints. The spatial patterns seen in 

Figure 2 suggest that density and access may be playing an important role in shaping energy 

consumption footprints as well.  It would be valuable to determine the relative contributions of 

socio-economic/demographic factors on the one hand and built environment and multimodal 

access factors on the other hand, to the household energy footprint.  By doing so, it would be 

possible to devise land use, housing, and transportation policy interventions that reduce the energy 

footprint and advance sustainable development patterns.  

 

CONCLUSIONS 

This report presents an integrated transport and residential energy analysis tool that is capable of 

quantifying the transport energy consumption and residential energy consumption of an individual 

household. The motivation to build such a tool stems from the possible inter-relationships that may 

exist between these two energy consumption footprints. A household that travels more and spends 

more time outside the home is likely to have a high transport energy footprint but may have a 

lower residential energy footprint and vice versa. Only operational energy consumption is 

considered within the scope of the tool presented in this report; energy consumed during travel is 

transport energy consumption and electricity and natural gas consumed at home constitute the 

residential energy consumption footprint.  

 In order to facilitate an integrated approach to residential and transport energy consumption 

analysis, detailed activity-travel and vehicle fleet composition and utilization information is 

modeled using the National Household Travel Survey (NHTS) data set and then applied to the 

Residential Energy Consumption Survey (RECS) data set to impute transportation related 

variables in the RECS data set. The enhanced RECS data set is then used to estimate regression 

equations of electricity and natural gas consumption that incorporate transport and activity time 

allocation related variables as explanatory factors. In general, it is found that household activity-

time allocation patterns affect residential energy consumption, albeit differently for households of 

different sizes.  While single-person households depict a clear trade-off between residential and 

transport energy consumption, larger households depict a more complementary (mutually 

reinforcing) relationship – suggesting that integrated models of household and transport energy 

consumption need to recognize heterogeneity in the nature of the relationships between them 

across the population of households in a region.  In general, households that travel more are likely 

to have active lifestyles that also contribute to higher levels of residential energy consumption.   

 The integrated model system is applied to a synthetic population for the Greater Phoenix 

area in Arizona to demonstrate the efficacy of the model. The entire model stream is applied to the 

synthetic population to estimate transportation and residential energy consumption footprints for 

all households in the region. These computations facilitated the identification and comparison of 

different energy consumption market segments and the findings are very intuitive with larger 

households, higher income households, households in detached single-family units, and 

households owning their home exhibiting higher levels of energy consumption. Households in 

outlying suburban areas depicted higher energy footprints, suggesting that the built environment 

may be playing some role in shaping energy consumption patterns. The tool presented in this report 

can be used to analyze the energy footprint implications of alternative urban designs and modal 

investments.    
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